

 Navigation

 	
 index

 	
 next |

 	wssdl 0.2.0 documentation

wssdl

	Setup
	Prerequisites

	Installing the library

	Getting started
	Packet definition

	Creating a protocol

	Registering a dissector

	Specifier reference
	Primitive Field Types

	Special Field Types

	Other specifiers

	How definitions are parsed
	The parsing process

	Reverse parsing pitfalls

 Copyright 2016, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wssdl 0.2.0 documentation

Setup

Prerequisites

The library needs a recent version of Wireshark and lua 5.1+.

Although the library is expected to work on older versions of Wireshark,
it has only been tested on 2.2.0 and above.

Installing the library

From a release

Grab wssdl.lua from the latest release [https://github.com/diacritic/wssdl/releases/latest],
and put it in one of Wireshark’s plugin paths.

Note

Usually, Wireshark loads plugins from ~/.config/wireshark/plugins and
/usr/lib/wireshark/plugins/<version>. You can check what directories
Wireshark checks by going into Help -> About -> Folders.

From source

Building from source requires as an additional prerequisite luarocks and the
luafilesystem module to be installed.

To boostrap the library in one coalesced file, and install it to
~/.config/wireshark/plugins, run from the project directory:

$ make install

If you prefer to install it in another location, set the variable WS_PLUGIN_DIR.
For instance, to install wssdl in the system plugin path for Wireshark 2.2.0:

$ sudo make WS_PLUGIN_DIR=/usr/lib/wireshark/plugins/2.2.0 install

 Copyright 2016, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wssdl 0.2.0 documentation

Getting started

Packet definition

The packet function is used to define the structure of your packet.

This function takes a sequence of comma/semicolon-separated fields, with each
field using the <field_id> : <specifier1>(params) ... : specifierN(params)
syntax, where <field_id> is an lua identifier for the field that is unique
in the current definition scope; and where each <specifier> is a wssdl
specifier, one of which must be a field type.

See Specifier reference for a complete list of specifiers.

local wssdl = require 'wssdl'

my_pkt = wssdl.packet {
 foo : u8();
 bar : i32();
 baz : utf8(256);
}

Creating a protocol

A Proto object can be created by calling the proto(name, description)
method on the created packet type:

my_pkt = wssdl.packet { ... }

proto = my_pkt:proto('proto_id', 'Some protocol')

The protocol name and description are passed verbatim to wireshark and as such
must both be unique.

Registering a dissector

The dissect function can be used to register one or more protocols in their
relevant dissector tables.

This function takes a sequence of dissector table mappings. Each mapping
follows the following syntax: <key>:<method> { <keyvalues> }, where
<key> is the identifier of the desired dissector table, <method> is either set or add (which holds the semantics of DissectorTable:set and DissectorTable:add respectively), and <keyvalues> are key/value entries where the key is the first parameter of set/add and the value is the proto object passed as second parameter.

wssdl.dissect {
 tcp.proto:add {
 [1234] = my_pkt:proto('proto_id', 'Some protocol')
 }
}

 Copyright 2016, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	wssdl 0.2.0 documentation

Specifier reference

Primitive Field Types

	Type
	Description

	u8()
	Unsigned 8-bit integer.

	u16()
	Unsigned 16-bit integer.

	u24()
	Unsigned 24-bit integer.

	u32()
	Unsigned 32-bit integer.

	u64()
	Unsigned 64-bit integer.

	i8()
	Signed 8-bit integer.

	i16()
	Signed 16-bit integer.

	i24()
	Signed 24-bit integer.

	i32()
	Signed 32-bit integer.

	i64()
	Signed 64-bit integer.

	int(N)
	Unsigned N-bit integer. If N isn’t specified, the size of
the field becomes the remaining payload size.
N cannot be larger than 64-bits.

	uint(N)
	Unsigned N-bit integer. If N isn’t specified, the size of
the field becomes the remaining payload size.
N cannot be larger than 64-bits.

	f32()
	32-bit floating-point value.

	f64()
	64-bit floating-point value.

	utf8(N)
	UTF8-encoded string w/ a length of N code units. If N
isn’t specified, the size of the field becomes the remaining
payload size.
If used, the field must be aligned on an octet boundary.

	utf8z()
	Null-terminated UTF8-encoded string.
If used, the field must be aligned on an octet boundary.

	utf16(N)
	UTF16-encoded string w/ a length of N code units. If N
isn’t specified, the size of the field becomes the remaining
payload size.
If used, the field must be aligned on an octet boundary.

	utf16z()
	Null-terminated UTF16-encoded string.
If used, the field must be aligned on an octet boundary.

	bytes(N)
	Byte buffer with a size of N octets. If N isn’t specified,
the size of the field becomes the remaining payload size.
If used, the field must be aligned on an octet boundary.

	bits(N)
	Bits buffer with a size of N bits.
N cannot be larger than 64-bits.

	bool(N)
	Boolean value with a size of N bits. If N isn’t specified
the size of this field is 1 bit.
A field value of zero means False, while non-zero means True.

	bit()
	A single bit.

	ipv4()
	IPv4 address.
If used, the field must be aligned on an octet boundary.

	ipv6()
	IPv6 address.
If used, the field must be aligned on an octet boundary.

Special Field Types

User Types

Any variable declared with wssdl.packet can be used as a field type.

Payload Type

The special payload type is used for packets that contains data that needs to
be subdissected by another registered dissector. The specifier comes in three
prototypes:

	payload { <field> }

	payload { <field>, <key> }

	payload { <field>, <key>, <size> }

Where <field> is the field that should be used as the value to lookup the
dissector table entry, <key> is the dissector table identifier, and
<size> is the size of the field in octets.

If <key> is nil or unspecified, then the dissector table identifier becomes
<prototype name>.<field>.

If <size> is nil or unspecified, then the size of the field becomes the
remaining packet size.

Other specifiers

	Type
	Description

	le()
	Parse the field as little-endian. The following types
support little-endian: u8, u16, u24, u32, u64, i8, i16,
i24, i32, i64, int, uint, f32, f64, utf16, utf16z, ipv4.

	dec()
	Use a decimal format for the integer field (default)

	hex()
	Use a hexadecimal format for the integer field

	oct()
	Use an octal format for the integer field

	name(str)
	Set the display name of the field to str.

	description(str)
	Set the description of the field to str.

 Copyright 2016, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	wssdl 0.2.0 documentation

How definitions are parsed

The parsing process

A packet definition always contain zero or more fields, called prefix fields,
followed optionally by one field with unspecified size, called variadic field,
followed by zero or more end fields, called suffix fields.

	Prefix fields are parsed first, top-to-bottom, until the end of
the packet is reached or a variadic field is reached.

	If a variadic field is reached, it is skipped and the parser jumps to the
last suffix field.

	All suffix fields are parsed, bottom-to-top, until the variadic field is
reached again.

	The variadic field is parsed, with a size equal to the gap between the last
prefix field and the first suffix field.

parsing order 1 2 3

packet {
 [prefix field 1] _
 . . . | forward parsing
 [prefix field N] v .
 .
 [variadic field] . . |-> forward parsing
 .
 [suffix field 1] . ^
 | reverse parsing
 [suffix field N] . ¯
}

Example

Given this definition:

wssdl.packet {
 prefix : u8();
 var : bytes();
 suffix : u8();
}

And this 3-byte raw packet: ababab (hexadecimal form)

	prefix is parsed, a value of 0xab is found.

	variadic is reached, the parser jumps to the last suffix field

	suffix is parsed, a value of 0xab is found.

Reverse parsing pitfalls

Because suffix fields are parsed bottom-to-top, the resolution rules and the
constraints change slightly to make the reverse parsing possible:

	Null-terminated string types (utf8z, utf16z) are prohibited.
This is because the null character would appear first during the reverse
parsing, and we would have no way of knowing the size of the field.

	Root packets (i.e. packets used as protocols) are implicitely aligned on an
8-bit boundary – mind the alignment constraint when you have unaligned
suffix fields!

	Fields with a size that depends on the value of another field needs to be
parsed after the field they depend on is parsed. This means that for suffix
fields, dependencies needs to appear after the field definition.

For instance, this is invalid:

wssdl.packet {
 prefix : u8();
 var : bytes();
 suffix_sz : u8();
 suffix : bytes(suffix_sz);
}

While this is valid:

wssdl.packet {
 prefix : u8();
 var : bytes();
 suffix : bytes(suffix_sz);
 suffix_sz : u8();
}

 Copyright 2016, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	wssdl 0.2.0 documentation

Index

 Copyright 2016, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.5.

 _static/up-pressed.png

_static/comment.png

search.html

 Navigation

 		
 index

 		wssdl 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Franklin "Snaipe" Mathieu.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment-bright.png

