
wssdl documentation
Release 0.2.0

Franklin "Snaipe" Mathieu

November 05, 2016





Contents

1 Setup 3
1.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Installing the library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Getting started 5
2.1 Packet definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Creating a protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Registering a dissector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Specifier reference 7
3.1 Primitive Field Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Special Field Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Other specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 How definitions are parsed 9
4.1 The parsing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Reverse parsing pitfalls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

i



ii



wssdl documentation, Release 0.2.0

Contents 1



wssdl documentation, Release 0.2.0

2 Contents



CHAPTER 1

Setup

1.1 Prerequisites

The library needs a recent version of Wireshark and lua 5.1+.

Although the library is expected to work on older versions of Wireshark, it has only been tested on 2.2.0
and above.

1.2 Installing the library

1.2.1 From a release

Grab wssdl.lua from the latest release, and put it in one of Wireshark’s plugin paths.

Note: Usually, Wireshark loads plugins from ~/.config/wireshark/plugins and
/usr/lib/wireshark/plugins/<version>. You can check what directories Wireshark checks
by going into Help -> About -> Folders.

1.2.2 From source

Building from source requires as an additional prerequisite luarocks and the luafilesystem module to be
installed.

To boostrap the library in one coalesced file, and install it to ~/.config/wireshark/plugins, run
from the project directory:

$ make install

If you prefer to install it in another location, set the variable WS_PLUGIN_DIR. For instance, to install
wssdl in the system plugin path for Wireshark 2.2.0:

$ sudo make WS_PLUGIN_DIR=/usr/lib/wireshark/plugins/2.2.0 install

3

https://github.com/diacritic/wssdl/releases/latest


wssdl documentation, Release 0.2.0

4 Chapter 1. Setup



CHAPTER 2

Getting started

2.1 Packet definition

The packet function is used to define the structure of your packet.

This function takes a sequence of comma/semicolon-separated fields, with each field using
the <field_id> : <specifier1>(params) ... : specifierN(params) syntax,
where <field_id> is an lua identifier for the field that is unique in the current definition scope; and
where each <specifier> is a wssdl specifier, one of which must be a field type.

See Specifier reference for a complete list of specifiers.

local wssdl = require 'wssdl'

my_pkt = wssdl.packet {
foo : u8();
bar : i32();
baz : utf8(256);

}

2.2 Creating a protocol

A Proto object can be created by calling the proto(name, description) method on the created
packet type:

my_pkt = wssdl.packet { ... }

proto = my_pkt:proto('proto_id', 'Some protocol')

The protocol name and description are passed verbatim to wireshark and as such must both be unique.

2.3 Registering a dissector

The dissect function can be used to register one or more protocols in their relevant dissector tables.

This function takes a sequence of dissector table mappings. Each mapping follows the following syn-
tax: <key>:<method> { <keyvalues> }, where <key> is the identifier of the desired dissector
table, <method> is either set or add (which holds the semantics of DissectorTable:set and

5



wssdl documentation, Release 0.2.0

DissectorTable:add respectively), and <keyvalues> are key/value entries where the key is the
first parameter of set/add and the value is the proto object passed as second parameter.

wssdl.dissect {
tcp.proto:add {

[1234] = my_pkt:proto('proto_id', 'Some protocol')
}

}

6 Chapter 2. Getting started



CHAPTER 3

Specifier reference

3.1 Primitive Field Types

Type Description
u8() Unsigned 8-bit integer.
u16() Unsigned 16-bit integer.
u24() Unsigned 24-bit integer.
u32() Unsigned 32-bit integer.
u64() Unsigned 64-bit integer.
i8() Signed 8-bit integer.
i16() Signed 16-bit integer.
i24() Signed 24-bit integer.
i32() Signed 32-bit integer.
i64() Signed 64-bit integer.
int(N) Unsigned N-bit integer. If N isn’t specified, the size of the field becomes the remaining

payload size. N cannot be larger than 64-bits.
uint(N) Unsigned N-bit integer. If N isn’t specified, the size of the field becomes the remaining

payload size. N cannot be larger than 64-bits.
f32() 32-bit floating-point value.
f64() 64-bit floating-point value.
utf8(N) UTF8-encoded string w/ a length of N code units. If N isn’t specified, the size of the field

becomes the remaining payload size. If used, the field must be aligned on an octet
boundary.

utf8z() Null-terminated UTF8-encoded string. If used, the field must be aligned on an octet
boundary.

utf16(N) UTF16-encoded string w/ a length of N code units. If N isn’t specified, the size of the field
becomes the remaining payload size. If used, the field must be aligned on an octet
boundary.

utf16z() Null-terminated UTF16-encoded string. If used, the field must be aligned on an octet
boundary.

bytes(N) Byte buffer with a size of N octets. If N isn’t specified, the size of the field becomes the
remaining payload size. If used, the field must be aligned on an octet boundary.

bits(N) Bits buffer with a size of N bits. N cannot be larger than 64-bits.
bool(N) Boolean value with a size of N bits. If N isn’t specified the size of this field is 1 bit. A field

value of zero means False, while non-zero means True.
bit() A single bit.
ipv4() IPv4 address. If used, the field must be aligned on an octet boundary.
ipv6() IPv6 address. If used, the field must be aligned on an octet boundary.

7



wssdl documentation, Release 0.2.0

3.2 Special Field Types

3.2.1 User Types

Any variable declared with wssdl.packet can be used as a field type.

3.2.2 Payload Type

The special payload type is used for packets that contains data that needs to be subdissected by another
registered dissector. The specifier comes in three prototypes:

• payload { <field> }

• payload { <field>, <key> }

• payload { <field>, <key>, <size> }

Where <field> is the field that should be used as the value to lookup the dissector table entry, <key>
is the dissector table identifier, and <size> is the size of the field in octets.

If <key> is nil or unspecified, then the dissector table identifier becomes <prototype
name>.<field>.

If <size> is nil or unspecified, then the size of the field becomes the remaining packet size.

3.3 Other specifiers

Type Description
le() Parse the field as little-endian. The following types support little-endian: u8, u16,

u24, u32, u64, i8, i16, i24, i32, i64, int, uint, f32, f64, utf16, utf16z, ipv4.
dec() Use a decimal format for the integer field (default)
hex() Use a hexadecimal format for the integer field
oct() Use an octal format for the integer field
name(str) Set the display name of the field to str.
description(str) Set the description of the field to str.

8 Chapter 3. Specifier reference



CHAPTER 4

How definitions are parsed

4.1 The parsing process

A packet definition always contain zero or more fields, called prefix fields, followed optionally by one
field with unspecified size, called variadic field, followed by zero or more end fields, called suffix fields.

1. Prefix fields are parsed first, top-to-bottom, until the end of the packet is reached or a variadic field
is reached.

2. If a variadic field is reached, it is skipped and the parser jumps to the last suffix field.

3. All suffix fields are parsed, bottom-to-top, until the variadic field is reached again.

4. The variadic field is parsed, with a size equal to the gap between the last prefix field and the first
suffix field.

parsing order 1 2 3

packet {
[prefix field 1] _

. . . | forward parsing
[prefix field N] v .

.
[variadic field] . . |-> forward parsing

.
[suffix field 1] . ^

. . . . | reverse parsing
[suffix field N] . ¯

}

4.1.1 Example

Given this definition:

wssdl.packet {
prefix : u8();
var : bytes();
suffix : u8();

}

And this 3-byte raw packet: ababab (hexadecimal form)

1. prefix is parsed, a value of 0xab is found.

9



wssdl documentation, Release 0.2.0

2. variadic is reached, the parser jumps to the last suffix field

3. suffix is parsed, a value of 0xab is found.

4.2 Reverse parsing pitfalls

Because suffix fields are parsed bottom-to-top, the resolution rules and the constraints change slightly to
make the reverse parsing possible:

• Null-terminated string types (utf8z, utf16z) are prohibited. This is because the null character
would appear first during the reverse parsing, and we would have no way of knowing the size of the
field.

• Root packets (i.e. packets used as protocols) are implicitely aligned on an 8-bit boundary – mind the
alignment constraint when you have unaligned suffix fields!

• Fields with a size that depends on the value of another field needs to be parsed after the field they
depend on is parsed. This means that for suffix fields, dependencies needs to appear after the field
definition.

For instance, this is invalid:

wssdl.packet {
prefix : u8();
var : bytes();
suffix_sz : u8();
suffix : bytes(suffix_sz);

}

While this is valid:

wssdl.packet {
prefix : u8();
var : bytes();
suffix : bytes(suffix_sz);
suffix_sz : u8();

}

10 Chapter 4. How definitions are parsed


	Setup
	Prerequisites
	Installing the library

	Getting started
	Packet definition
	Creating a protocol
	Registering a dissector

	Specifier reference
	Primitive Field Types
	Special Field Types
	Other specifiers

	How definitions are parsed
	The parsing process
	Reverse parsing pitfalls


